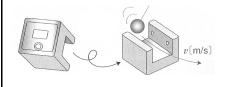

目的 (1)振り子と(2)ばねの運動において力学的エネルギーが保存されているかを検討する

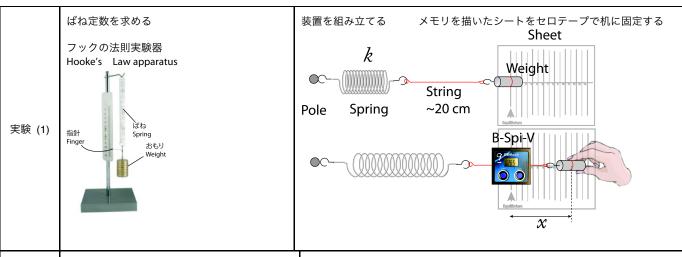

仮説 (1) 振り子のおもりの最下点での運動エネルギーと位置エネルギーの和は最高点での位置エネルギーに等しい。

(2) ばねの位置エネルギーとばねにつないだ物体の運動エネルギーに等しい。

器具 ボード、金属棒、おもり、糸、速度測定器(BeeSpiV)、線入り用紙、スタンド、ばね

振り子の最下点に BeeSpiV を置く。速度測定 モード(cm/s)にする。おもりが BeeSpiV に接触 しないように位置を調節する。

おもりを最下点 (h_0) から h_1 の高さまで持ち上げる。 h_1 はおもりの中央までの高さ。


手を離し、最下点を通過させる。 BeeSpiV の 測定値を読み取る。

おもりや持ち上げる高さをいろいろ変えて測定をやり直す。

結果のまとめと考察

- 1. それぞれの位置エネルギーmgh [J]を計算する。
- 2. おもりが最下点を通過したときの瞬間の速さ v から、その運動エネルギー、 $1/2 \ mv^2$ [J]、を求める。
- 3. 以上のデータを元に表にまとめる。各点での力学的エネルギーを比較する。
- 4. 運動中に振り子が受けている力をすべてあげ、それぞれが仕事をしているかどうかを考察せよ。

	Maxin heig		Minimum height					(A-B)/A x100	Note
	h ₁	A=mgh₁	h _o	V	mgh_0	½ mv ²	$B= mgh_0 + \frac{1}{2} mv^2$		
Exp	m	J	m	m/s	J	J	J	%	
1									
2									
3									
4									
5									
6									
7									
8									

- ・糸の先におもりを取り付ける。
- ・ばねを自然長の状態にし、その時のおもりの 中心を原点とする。
- ・おもりを後ろに引き、伸びを読み取る。
- ・B-SpiV を Start にしておもりを離し速さを測 定する。

結果のまとめと考察

- 1. おもりを離した位置 x からばねの位置エネルギー、 $1/2~kx^2$ [J]を求める。
- 2. おもりの速さから運動エネルギー、 $1/2 \, mv^2 \, [J]$ を求める。
- 3. 以上のデータを元に表にまとめる。各点での力学的エネルギーを比較する。

Spring constant k =Mass of Weight $\, m =$ Spring Weight Note A= $1/2 kx^2$ B= $\frac{1}{2} mv^2$ (A-B)/A x100 \boldsymbol{x} vExp m J m/s 1 2 3 4 5 7