Laboratory Report

Title

Forces in Equilibrium

Homeroom	Section				
	2	Name	Marī	Shibata	

Lab Partners Kisuke Uchiumi

Summary

In this experiment, | examined the forces in Equilibrium by using a force table. First, | put different weights in 3 or 4 hangers and balanced them by letting the ring be at the center. Also, | put different weights in 4 hangers and did not balance them. Then, | put the results of the 3 experiment into the graph and state Net Force by using the parallelogram method and head-to-tail method, and moth-method. | learned that the net force made from several forces in equilibrium is zero, although there were some errors. | understand the equation($\vec{A} + \vec{B} + \vec{c} + \vec{D} = 0$)

· Meet a deadline · Write logically · Write clearly · Write with your own words

Teacher's Comments

Josed drawings and analysis. Scales in graphs and

the summay tables are also good. A worong enpression

of angle in the mathemathed.

1	2	3	4	5	6	7	8	9
Due	Summary	Intro.	Method.	Results	Table/Fig.	Discussion	Clearness	General
			1 1					

Use this form as a cover sheet.

^{*} Submit your reports by the seventh day after your lab.

<Results>

Test 1: 3 forces are balanced Length of an arrow 1N=4cm

Table 1	Mass of Weight (kg)	Force (N)	Arrow (cm)	Angle (°)
А	0.2	1.96	7.84	0°
В	0.1	0.98	3.92	126°
С	0.15	1.47	5.88	219°

Newton's Second Law: Force=Mass × gravitational acceleration =Mass × 9.80m/s²

Test 2 : 4 forces are balanced Length of an arrow 1N=4cm

Table 2	Mass of Weight (kg)	Force (N)	Arrow (cm)	Angle (°)
Α	0.25	2.45	9.80	0°
В	0.1	0.98	3.92	102°
С	0.2	1.96	7.84	168°
D	0.15	1.47	5.88	254°

Newton's Second Law: Force=Mass × gravitational acceleration =Mass × 9.80m/s²

Test 3: 4 forces are not balanced Length of an arrow 1N=4cm

Table 3	Mass of Weight (kg)	Force (N)	Arrow (cm)	Angle (°)
А	0.25	2.45	9.80	0°
В	0.1	0.98	3.92	45°
С	0.2	1.96	7.84	182°
D	0.15	1.47	5.88	254°

Newton's Second Law: Force=Mass × gravitational acceleration =Mass × 9.80m/s²

Table 4: Math Method of Experiment 1

Ex 1	Force	θ	Fx= Fcosθ	Fy= Fsinθ
Unit	[N]	[°]	[N]	[N]
Α	1.96	0°	1.960	0.000
В	0.98	129°	-0.617	0.762
С	1.47	219°	-1.142	-0.925
		ΣΕχ, ΣΕγ	0.201	-0.163

$$F = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(0.201)^2 + (-0.163)^2} = 0.259$$
 F=0.259N

 $\theta = tan^{-1}(\Sigma Fy/\Sigma Fx) = tan^{-1}(-0.613)/(0.201) = -39^{\circ}$

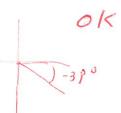


Table 5: Math Method of Experiment 2

Ex 1	Force	θ	Fx= Fcosθ	Fy= Fsinθ
Unit	[N]	[°]	[N]	[N]
А	2.45	0°	2.45	0.000
В	0.98	102°	-0.204	0.959
С	1.96	168°	-1.917	0.408
D	1.47	254°	-0.405	-1.413
		ΣΕχ, ΣΕγ	-0.076	-0.100

$$F=\sqrt{(\Sigma Fx)^2+(\Sigma Fy)^2}=\sqrt{(-0.076)^2+(-0.100)^2}=0.126$$
 F=0.126N

$$\theta$$
=tan⁻¹(ΣFy/ΣFx)=tan⁻¹(-0.076)/(0.100)=37.2° θ =37.2° θ =37.2°

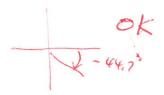
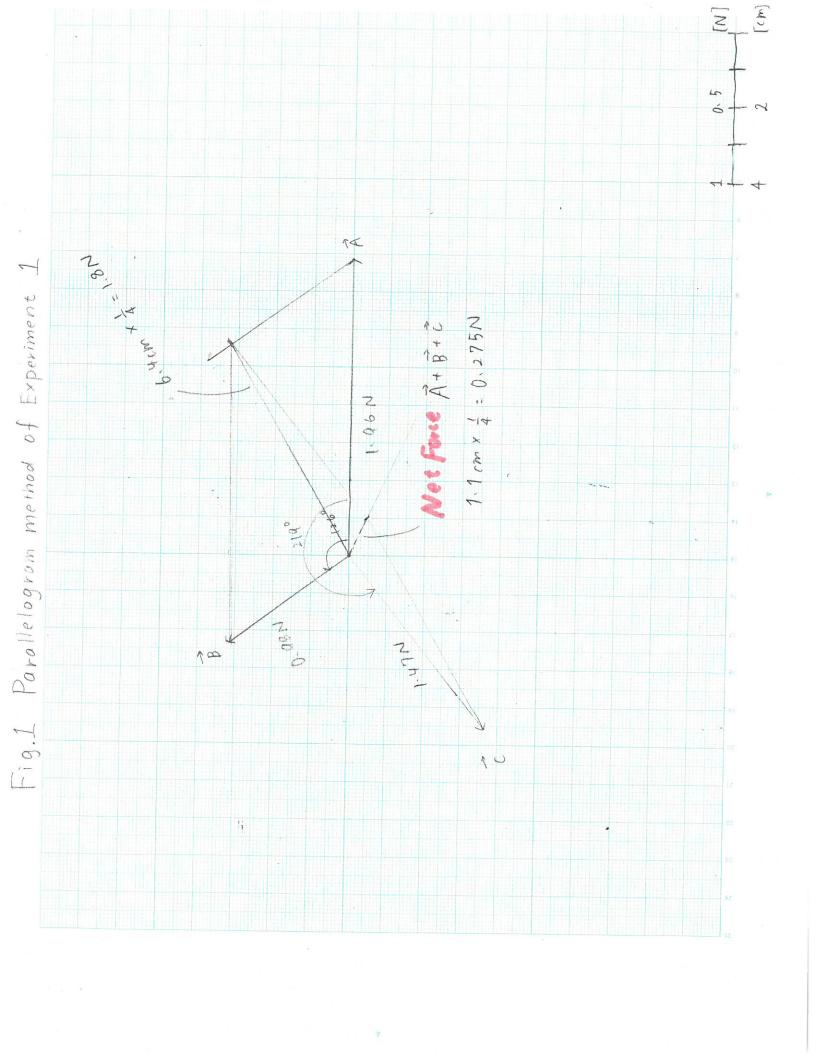
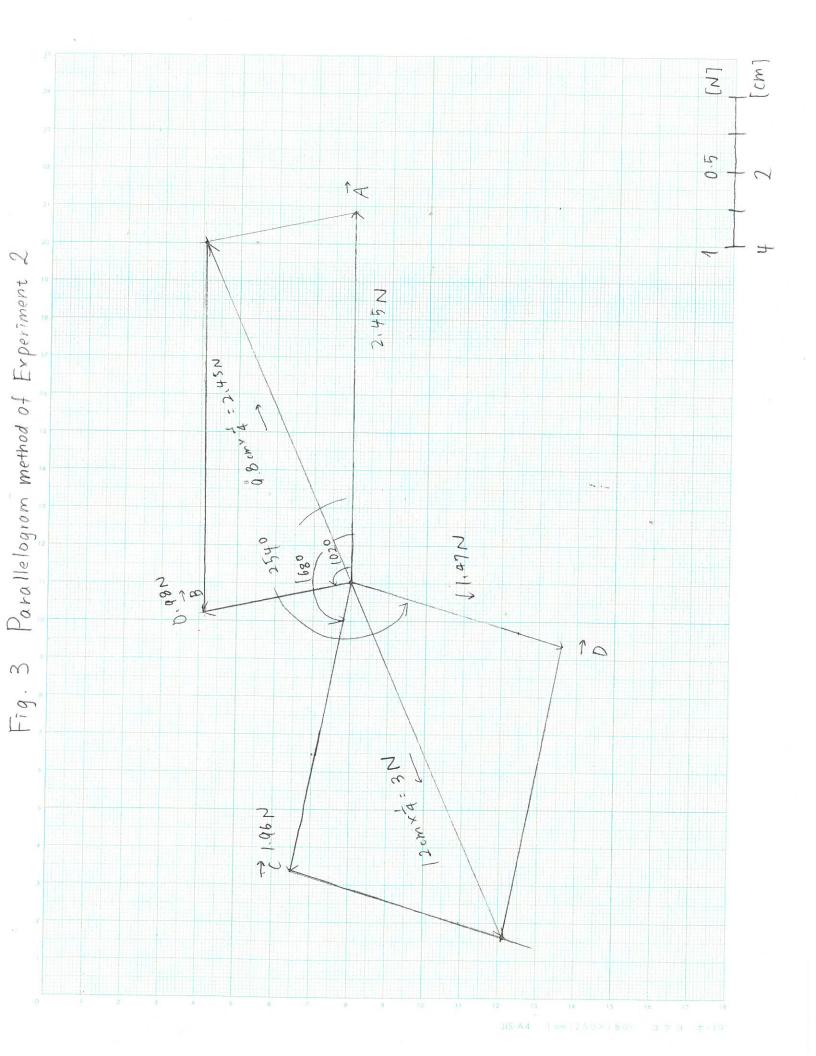
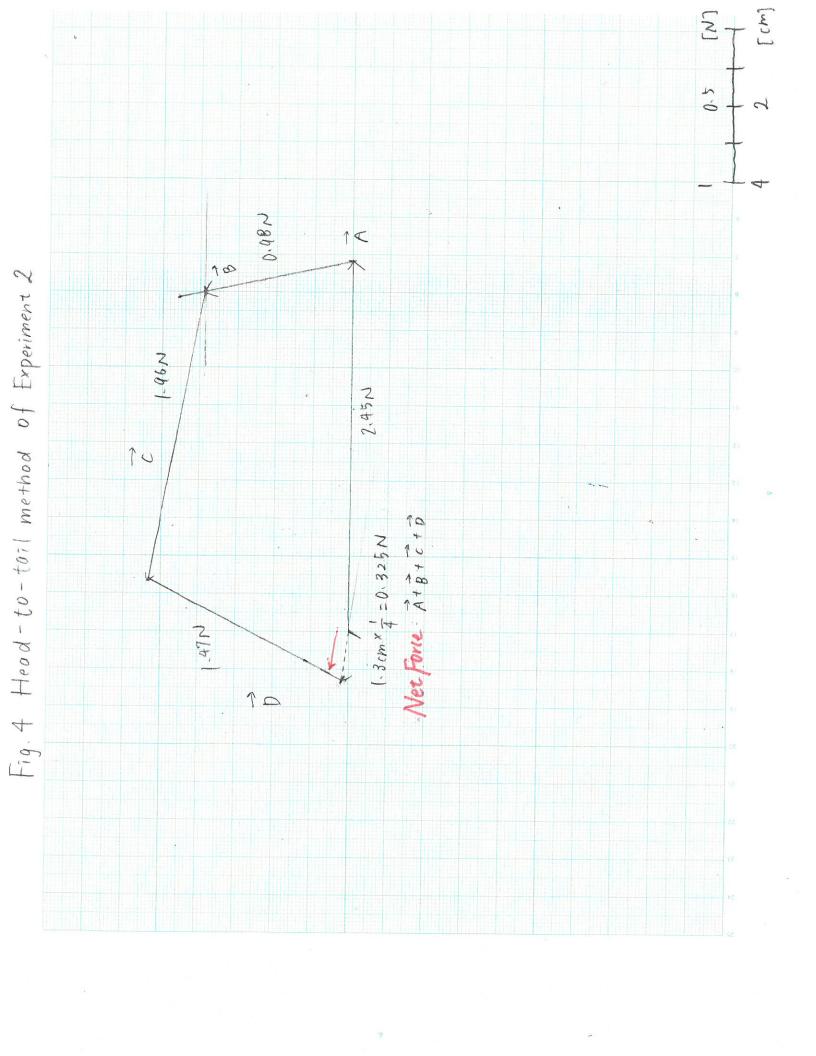
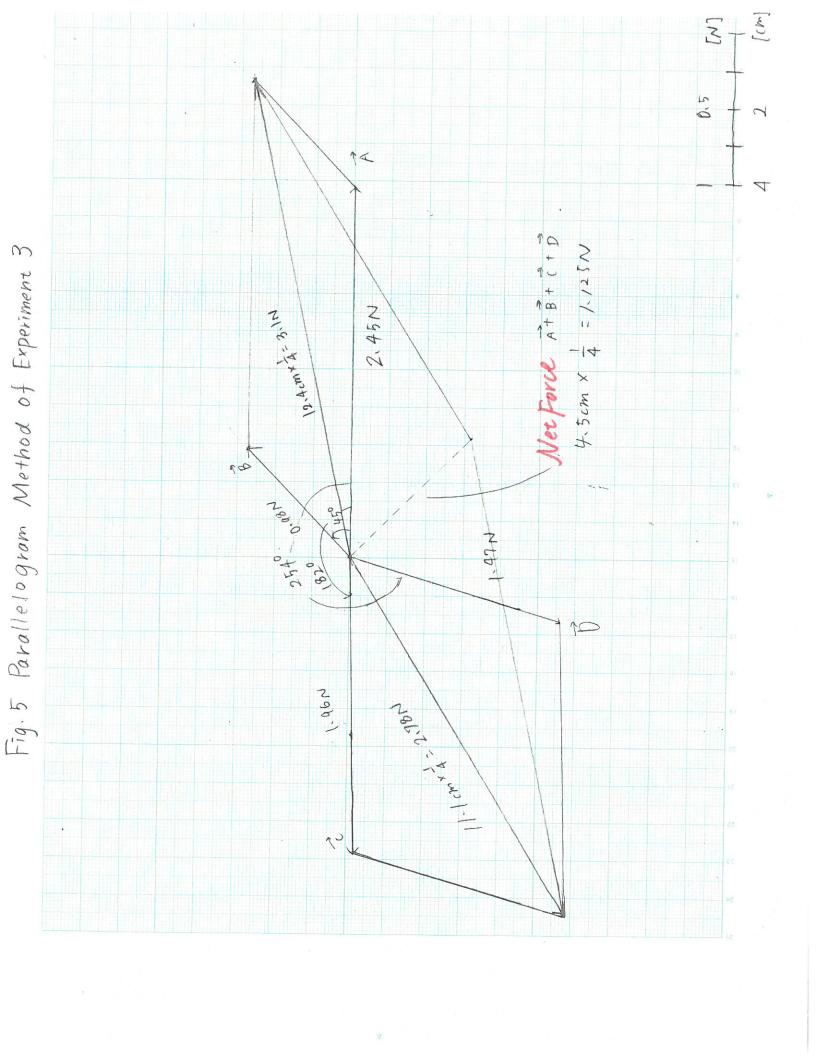

180+37,2 = 217,

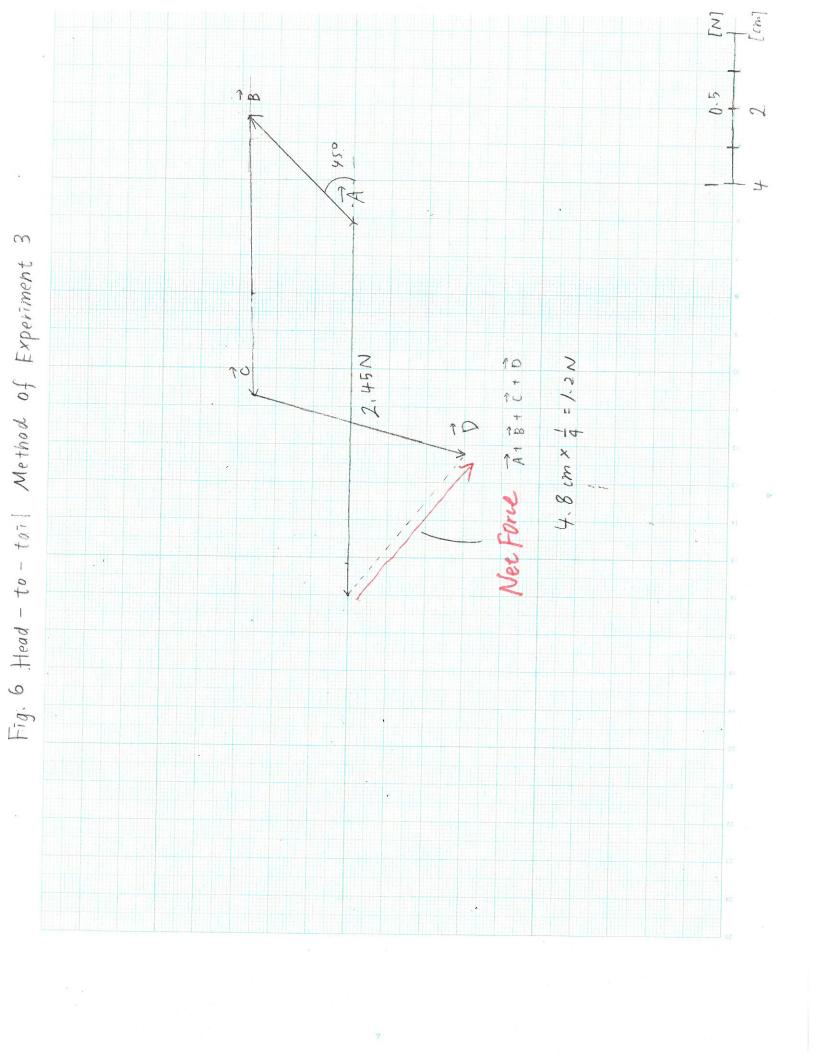
Table 6: Math Method of Experiment 3


Ex 1	Force	θ	Fx= Fcosθ	Fy= Fsinθ
Unit	[N]	[°]	[N]	[N]
Α	2.45	0°	2.45	0.000
В	0.98	45°	0.693	0.693
С	1.96	182°	-1.959	-0.068
D	1.47	254°	-0.405	-1.413
		ΣΕχ, ΣΕγ	0.779	-0.788


$$F = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(0.779)^2 + (-0.788)^2} = 1.108 \text{ } F = 1.108 \text{N}$$


$$\theta$$
=tan⁻¹(Σ Fy/ Σ Fx)=tan⁻¹(-0.779)/(-0.788)=-44.7 θ =-44.7°




217,2

<Discussion>

(1) Experiment 1

oAs you can see from Fig.1, the length of A is almost **same length** with B+C and the two lines are almost on **opposite side** of A. There is a little difference between the force of line C and the diagonal of parallelogram, so you can make a parallelogram by using the 2 lines and state the **Net Force**.(=0.275N)

oAs you can see from Fig.2, the tail point of C almost reach the origin point of A. However, It doesn't completely reach the tail point C, so you can state **Net force.**(=0.3N)

oFrom table 4, the value of net force is almost 0. (0.259N)

oAs you can see from Fig 1, Fig 2 and Table 5, the 3 value of net force that you state in 3 different ways are almost same number and close to zero.

Because of these reasons, the 3 forces are **balanced** and the equation is made.

$$\overrightarrow{A} = -(\overrightarrow{B} + \overrightarrow{C})$$

 $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$

(2)Experiment 2

 \circ As you can see from Fig.3, the length of \overrightarrow{A} is almost **same length** with $\overrightarrow{B}+\overrightarrow{C}+\overrightarrow{D}$ and the two lines are almost on **opposite side** of \overrightarrow{A} . Although there is a difference between force of \overrightarrow{A} (2.45N)and B+C+D(3N), the two diagonals of parallelogram are too straight and the net force doesn't appear.

 \circ As you can see from Fig.4, the tail point of \overrightarrow{D} almost reach the origin point of \overrightarrow{A} . However, line \overrightarrow{D} doesn't completely reach the point \overrightarrow{A} , so you can state **Net force.** (=0.325N)

oFrom table 5, the value of net force is almost 0. (0.126N)

oAs you can see from Fig 4 and Table 5, the 2 value of net force that you state in 2 different ways are almost same number and close to zero.

Because of these reasons, the 3 forces are **balanced** and the equation is made.

$$*\overrightarrow{A} = -(\overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D})$$

$$*\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} = 0$$

(3) Experiment 3

- \circ As you can see from Fig.5, the length of \overrightarrow{A} is not same as length of $\overrightarrow{B}+\overrightarrow{C}+\overrightarrow{D}$. Also \overrightarrow{A} is not on opposite side with B. Also there is difference between two diagonals of the parallelograms so you can state Net Force by making a parallelogram.(F=1.125N)
- \circ As you can see from Fig.6, the tail point of \overrightarrow{D} doesn't reach the origin point of \overrightarrow{A} , so you can state Net Force by drawing a line from the tail point \overrightarrow{D} to the origin point \overrightarrow{A} .(F=1.2)
- oAccording to table 6, the value of net force is not close to zero.(1.108N)
- oFrom Fig 5, Fig 6 and Table 6, the four forces are not balanced and the equations does not hold.

$$*\overrightarrow{A} = -(\overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D})$$
$$*\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} = 0$$

(4) Comparison

<Experiment 1>

Ex.1	F	θ
Parallelogram method	0.275N	-26°
Head-to-tail method	0.3N	-31°
Math method	0.259N	-39°

This results agree well.

Ex.2	F	θ
Parallelogram method	couldn't state	×
Head-to-tail method	0.325N	-9°
Math method	0.126N	-37.2°

XThe net force of Parallelogram method was not stated because the two diagonals of parallelogram are too straight and the net force doesn't appear.

This result doesn't agree well.

Ex.3	F	θ
Parallelogram method	1.125N	-43°
Head-to-tail method	1.2N	-40°
Math method	1.108N	-44.7°

This result agree well.

There are differences of measured net forces, because ...

- * I considered that there was a frictional force.
- * I considered that the difference occured when I rounded off the values.

<Conclusion>

The net force made from several forces (In this lab, 3 or 4 forces) at equilibrium is zero. This show the equation below.

<Opinion>

Through this experiment, I learned how to state net force by drawing parallelogram method and head-to-tail method and using math method. Also I was able to understand the state of $\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}+\overrightarrow{D}=0$ although I didn't understand well before this lab. This experiment helped me to learn forces in equilibrium.